Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Bis[bis(*N*,*N*-diethyl-1,1-diselenocarbamato)copper(II)], [Cu(Se₂CNEt₂)₂]₂

Mutai Bao, Jiabao Weng, Weiping Su, Rong Cao and Maochun Hong*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China Correspondence e-mail: hmc@ms.fjirsm.ac.cn

Received 10 April 2000

Data validation number: IUC0000102

The title centrosymmetric Cu^{II} binuclear complex, bis(μ -N,N-diethyl-1,1-diselenocarbamato-Se,Se':Se)bis[(N,N-diethyl-1,1-diselenocarbamato-Se,Se')copper(II)], [Cu(Se₂CNEt₂)₂]₂ or [Cu₂(C₅H₁₀NSe₂)₄], is built from two symmetry-related [Cu{Se₂CN(Et)₂}₂] units by pairs of Cu–Se bonds. The coordination geometry at the unique Cu atom is distorted square pyramidal, with Cu–Se distances in the range 2.4091 (11)–2.9095 (10) Å.

Comment

In sharp contrast to many studies on the chemistry of metal complexes with 1,1-dithiolate ligands, the chemistry of metal complexes with 1,1-diselenolate ligands has received scant attention. Although the 2,2-dicyanoethylene-1,1-diselenolate and *N*,*N*-diethyl-1,1-diselenocarbamate ligands were prepared many years ago (Jensen & Henriksen, 1970; Barnard & Woodbridge, 1961), to our surprise, there are very few papers referring to such diselenolate ligands, among which the investigation was focused on the spectroscopic properties (Jensen & Krishnan, 1970), and very few crystal structures, such as bis(tetra-*n*-butylammonium) bis(2,2-dicyanoethylene-1,1-diselenolato)selenium(II) (Hummel *et al.*, 1992) and selenium bis(1-pyrrolidinecarbodiselenoate) (Esperas *et al.*, 1975), have been determined.

Current research interest is directed towards the understanding of the activation and cleavage of C–S and C–Se bonds in transition metal complexes featuring thiolate ligands (Hong *et al.*, 1997, 1998; Cao *et al.*, 1994). In an attempt to observe how the C–Se bonds were activated by transition metal active centers, we prepared a series of complex containing *N*,*N*-diethyl-1,1-diselenocarbamate ligands. Herein we report a centrosymmetric binuclear Cu^{II} complex, [Cu(Se₂CNEt₂)₂]₂, (I), which was prepared from the reaction of CuSO₄ and Se[(Se₂CNEt₂)₂]₂ in THF. Each bivalent Cu atom in the complex is coordinated by two *N*,*N*-diethyl-1,1diselenocarbamate ligands in a distorted square-planar geometry forming a [Cu(Se₂CNEt₂)₂] unit. Two such units are linked by Cu—Se bonds to form the binuclear complex. Thus, the coordination geometry of each Cu atom is distorted square pyramidal involving CuSe₅. *N*,*N*-Diethyl-1,1-diseleno-carbamate acts as a chelating ligand to coordinate the Cu atom with an Se—Cu—Se angle of 79.04 (5)°. Two kinds of Cu—Se bonds are present in the complex: the shorter are in the range 2.4091 (11)–2.4455 (8) Å (average 2.428 Å) and the longer is 2.9095 (10) Å. The shorter average is compatible with distances found in the related compounds bis(tetra-*n*-butyl) bis(1,1-dicyanoethene-2,2-diselenolato-*Se*,*Se'*)nitridotechnetium(V) (Abram *et al.*, 1991) and bis(tetraphenylarsonium) tris(2,2-diselenido-1,1-ethylenedicarbonitrile)nickel(IV) (Kaiser *et al.*, 1980)

Experimental

The title compound was obtained from the reaction of $CuSO_4$ and and $Se[{Se_2CN(Et)_2}_2]_2$ (molar ratio 1:1) in THF. To a solution of $Se[{Se_2CN(Et)_2}_2]_2$ (0.69 g, 1 mmol) in THF (20 ml) was added solid $CuSO_4$ (0.15 g, 1 mmol). The reaction solution turned brown-red gradually. After stirring for 2 h, the brown-red solution was filtered. The filtrate was kept in an icebox for one week to yield brown-red prisms of the title complex. Crystals suitable for X-ray diffraction analysis were obtained by recrystallization from THF/hexane at room temperature.

Crystal data

$Cu_2(C_5H_{10}NSe_2)_4]$	$D_x = 2.158 \text{ Mg m}^{-3}$
$M_r = 1095.32$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 397
$a = 9.825 (2) \text{ Å}_{1}$	reflections
b = 10.904 (2) Å	$\theta = 12.6 - 19.8^{\circ}$
c = 16.051 (3) Å	$\mu = 9.917 \text{ mm}^{-1}$
$\beta = 101.44 \ (3)^{\circ}$	T = 293 (2) K
V = 1685.4 (6) Å ³	Prism, brown-red
Z = 2	$0.29 \times 0.24 \times 0.22 \text{ mm}$

Data collection

```
SMART CCD diffractometer

\omega scans

Absorption correction: empirical

empirical from equivalent reflec-

tions (XEMP in SHELXTL;

Sheldrick, 1994)

T_{min} = 0.168, T_{max} = 0.269

7952 measured reflections
```

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.086$ S = 1.0822929 reflections 155 parameters H-atom parameters constrained 2929 independent reflections 2474 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 25.02^{\circ}$ $h = -10 \rightarrow 11$ $k = -7 \rightarrow 12$ $I = -19 \rightarrow 16$

```
l = -19 \rightarrow 16
Intensity decay: none
```

```
\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0439P)^2 \\ &+ 0.5791P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{max} = 0.001 \\ \Delta\rho_{max} = 1.10 \ e \ \text{\AA}^{-3} \\ \Delta\rho_{min} = -0.71 \ e \ \text{\AA}^{-3} \\ Extinction \ correction: \ SHELXL97 \\ Extinction \ coefficient: \ 0.0090 \ (4) \end{split}
```

Table 1

Selected geometric parameters (Å, °).

Se1-C11	1.866 (5)	Se3-C21	1.865 (5)
Se1-Cu	2.4091 (11)	Se3-Cu	2.4127 (11)
Se2-C11	1.867 (5)	Se4-C21	1.856 (5)
Se2-Cu	2.4455 (8)	Se4-Cu	2.4397 (8)
Se2-Cu ⁱ	2.9095 (10)	Cu-Se2 ⁱ	2.9095 (10)
C11-Se1-Cu	85.45 (14)	Se1-Cu-Se2	78.84 (3)
C11-Se2-Cu	84.37 (14)	Se3-Cu-Se2	99.51 (3)
C11-Se2-Cu ⁱ	99.31 (14)	Se4-Cu-Se2	172.43 (3)
Cu-Se2-Cu ⁱ	85.96 (3)	Se1-Cu-Se2 ⁱ	100.93 (3)
C21-Se3-Cu	84.43 (15)	Se3-Cu-Se2 ⁱ	99.85 (3)
C21-Se4-Cu	83.84 (14)	Se4-Cu-Se2 ⁱ	93.53 (3)
Se1-Cu-Se3	159.22 (4)	Se2-Cu-Se2 ⁱ	94.04 (3)
Se1-Cu-Se4	99.65 (3)	Se1-C11-Se2	111.3 (2)
Se3-Cu-Se4	79.23 (3)	Se4-C21-Se3	112.5 (2)

Symmetry code: (i) -x, 2 - y, -z.

Data collection: *SMART CCD Software* (Siemens, 1994); cell refinement: *SMART CCD Software*; data reduction: *SMART CCD Software*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); software used to prepare material for publication: *SHELXL*97.

This work was supported by the Natural Science Foundation of China.

References

- Abram, U., Abram, S., Stach, J., Dietzsch, W. & Hiller, W. (1991). Z. Naturforsch. Teil B, 46, 1183–1186.
- Barnard, D. & Woodbridge, D. T. (1961). J. Chem. Soc. pp. 2922-2961.
- Cao, R., Hong, M. C., Jiang, F. L., Xie, X. L. & Liu, H. Q. (1994). J. Chem. Soc. Dalton Trans. pp. 3459–3463.
- Esperas, S., Husebye, S. & Rolandsen, A. (1975). Acta Chem. Scand. Ser. A, 29, 608–609.
- Hong, M. C., Su, W. P., Cao R. Jiang, F. L., Liu, H. Q. & Lu J. X. (1998). Inorg. Chim. Acta, 274, 229–231.
- Hong, M. C., Zhang, Q. F., Cao, R., Wu, D. X., Chen, J. T., Zhang, W. J., Liu, H. Q. & Lu, J. X. (1997). *Inorg. Chem.* 36, 6251–6260.
- Hummel, H.-U., Fischer, E., Fischer, T., Gruss, D., Franke, A. & Dietzsch, W. (1992). Chem. Ber. 125, 1565–1568.
- Jensen, K. A. & Henriksen, L. (1970). Acta Chem. Scand. 24, 3213-3229.
- Jensen, K. A. & Krishnan, V. (1970). Acta Chem. Scand. 24, 1090–1092, 1092– 1093.
- Kaiser, J., Dietzsch, W., Richter, R., Golic, L. & Siftar, J. (1980). Acta Cryst. B36, 147–149.
- Sheldrick, G. M. (1994). SHELXTL. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.